NORM-EUCLIDEAN CYCLIC FIELDS OF PRIME DEGREE

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Norm-euclidean Cyclic Fields of Prime Degree

Let K be a cyclic number field of prime degree `. Heilbronn showed that for a given ` there are only finitely many such fields that are normEuclidean. In the case of ` = 2 all such norm-Euclidean fields have been identified, but for ` 6= 2, little else is known. We give the first upper bounds on the discriminants of such fields when ` > 2. Our methods lead to a simple algorithm which allows one...

متن کامل

Solvability of norm equations over cyclic number fields of prime degree

Let L = Q[α] be an abelian number field of prime degree q, and let a be a nonzero rational number. We describe an algorithm which takes as input a and the minimal polynomial of α over Q, and determines if a is a norm of an element of L. We show that, if we ignore the time needed to obtain a complete factorization of a and a complete factorization of the discriminant of α, then the algorithm run...

متن کامل

On the Distribution of Cyclic Number Fields of Prime Degree

Let N Cp (X) denote the number of C p Galois extensions of Q with absolute discriminant ≤ X. A well-known theorem of Wright [1] implies that when p is prime, we have N Cp (X) = c(p)X 1 p−1 + O(X 1 p) for some positive real c(p). In this paper, we improve this result by reducing the secondary error term to O(X

متن کامل

Some generalized Euclidean and 2-stage Euclidean number fields that are not norm-Euclidean

We give examples of Generalized Euclidean but not norm-Euclidean number fields of degree greater than 2. In the same way we give examples of 2-stage Euclidean but not norm-Euclidean number fields of degree greater than 2. In both cases, no such examples were known.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Number Theory

سال: 2012

ISSN: 1793-0421,1793-7310

DOI: 10.1142/s1793042112500133